DOCUMENT RESUME

ED 368 887	CE 066 059
TITLE	Verifying Applied Literacy Skills (VALS) in ABE Programs.
INSTITUTION SPONS AGENCY	Lehigh County Community Coll., Schnecksville, Pa. Pennsylvania State Dept. of Education, Harrisburg.
PUB DATE CONTRACT	93 98-3043 90m
PUB TYPE	Tests/Evaluation Instruments (160) Reports - Research/Technical (143)
EDRS PRICE	MF01/PC04 Plus Postage.
DESCRIPTORS	Adult Basic Education; Comparative Analysis; Course Descriptions; Followup Studies; *Functional Literacy; *High School Equivalency Programs; *Literacy Education; Predictor Variables; Prognostic Tests; *Program Effectiveness; Questionnaires; Reading Skills: Student Attitudes: *Test Poliability
IDENTIFIERS	353 Project; "General Educational Development Tests; "Tests of Applied Literacy Skills; Workplace Literacy

ABSTRACT

An experimental study compared the effectiveness of a traditional General Educational Development (GED) curriculum with a literacy curriculum based on applied literacy skills. An experimental group of 34 adult students received GED instruction emphasizing functional and workplace contexts and supplemental instruction, whereas the 35 students in the control group received instruction based on a traditional GED curriculum. Fourteen students from each group completed the training programs. No major differences between the experimental and control group members' test performance, retention, or success in meeting their stated goals were found. A second objective of the study was to determine the validity of the Educational Testing Service's Tests of Applied Literacy Skills (TALS) as a predictor of GED performance. A regression analysis of the students' pre-GED course scores on the TALS did not reveal any correlation between the students' performance in a GED program and their performance on the TALS. The study findings were concluded to be tentative at best given the small sample size and variable of two instructors. (Appended are data summaries and statistical analyses, an outline of the applied literacy curriculum, and student follow-up survey.) (MN)

RECEIVED

210 2 6 1993

FUNCTION ADDITION

VERIFYING APPLIED LITERACY SKILLS (VALS)

in ABE Programs

U.S. DEPARTMENT OF EDUCATION

Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it

Minor changes have been made to improve reproduction quality

 Points of view or opinions stated in this document do not necessarily represent official OERI position or policy Joan K. Lipiec Project Coordinator

Catherine Campbell

Joseph Cortese

Jean Dyer Project Instructors "PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

Lauren Giguere Director of Literacy and Job Training

Lehigh County Community College, City Site 609 Hamilton Mall Allentown, PA 18101 (215) 776-1998

> Fiscal Year 1992-93 Contract #98-3043 Federal Project Cost \$17,650

The activity which is the subject of this report was supported in part by the U.S. Department of Education. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Department of Education, and no official endorsement should be inferred.

TABLE OF CONTENTS

. . .

ABSI	FRACT	•	•	•	•	•	•	•	•	٥	٠	٠	٥	•	•	•	•	•	٠	•	•	•	•	•	•	1
INTE	RODUCT	ION	ſ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
STAT	rement	OF	' 'I	ΉE	5 I	PRC	BI	JEN	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
GOAI	LS AND	OB	JE	Cl	rı,	JES	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
TRE	ATMENT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
FINI	DINGS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	Object Object Object Object Object	tiv tiv tiv Da	re re re ita	1. 2. 3. 4.	. 0 . 0 . 0	• • •	• • •	• • •	• • • •		• • • •	• • •	10 11 14 19 23													
CON	CLUSIO	NS			•	•	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	25
APP	ENDICE	S																								
	Append	dix	c 7	7.	- 1	Dat	ca	Sı	1111	ma	ri	es	aı	nd	St	tat	:is	st:	ica	a 1	Aı	na	Lys	ses	3	
	Append	dix	c E	3.	- (Cu	rr:	icu	1 1	um	a	nd	Ma	ate	er:	ial	ls	01	ut:	liı	ne					
	Appen	di>	c (Ţ.	- :	Sti	ıde	ent		Fo	11	JWC	up	Sı	ır	vey	Y									

ABSTRACT PAGE

Title: _	Verify	ing Applied	Literacy Ski	lls in ABE Pi	ograms	(VALS)		
Project	No.:	98-3043	Funding:	\$17,650				
Project	Director	: Joan	K. Lipiec	Phon	e No.: _	(215)	776-1998	
Agency A	ddress:	Lehigh Cou	nty Community	College, 60	Hamilt	on Mall,	Allentown, F	PA 18101

Description:

This project attempted to show, via an experimental and control group, that testing and a curriculum based on applied literacy skills would result in at least equivalent, if not better basic skills growth; would achieve a higher retention rate; and would be better directed toward adults' goals. The experimental group was to receive GED instruction with functional and workplace contexts emphasized as well as supplemental instruction. The control group was to receive a traditional GED curriculum.

Objectives:

- 1.0 To investigate the degree to which the ETS Tests of Applied Literacy Skills may be used in predicting GED success.
- 2.0 To obtain baseline data on applied skills which can be compared to state (VALS) and national (NALS) literacy scores.
- 3.0 To demonstrate greater learning gains and retention rates in the experimental when compared to a traditional GED program.
- 4.0 To determine the level of post-program student success in meeting goals. Target Audience:

Adults in Lehigh County who lack a high school diploma and who are likely to be deficient in basic skills.

Product(s)--if applicable:

Final Report includes curriculum outlines and materials.

Method(s) of Evaluation:

-Regression analysis to determine correlation of ABLE and TALS tests -T tests to compare experimental and control group performance on standardized tests -Comparison of attendance data using means and percentages

Findings:

There were no major differences on experimental and control group performance, retention rates or success in meeting goals.

Conclusions:

Given the small sample size (N=71) and the variable of two different instructors, tentative conclusions are that the TALS cannot be used as a predictor of GED performance.

Descriptors: (To be completed only by AdvancE staff)

INTRODUCTION

-2-

The VALS project began with the assumption that real (personal and work) tasks are the most important areas for which adults must be prepared. It proposed to demonstrate that alternative curricula and testing procedures would equal or surpass traditional ABE/GED preparatory programs in student learning gains, retention rates, and in readiness for employment. The project also forecasted that results would provide more valid and reliable data to compare with state and national statistics.

Lehigh County Community College proposed a research design with an experimental and control group to test the viability of curricula and testing which focused on applied literacy skills, job readiness and employee skills, and computer literacy in preparing adults for life tasks.

Through its GED waiting list, the project recruited 71 adults for GED preparation. Based upon pretest data using the Tests of Applied Literacy Skills (TALS) and the ABLE test, the population was divided into two roughly equal subgroups. The control group was to be taught using a traditional ABE approach and materials. The experimental group would receive instruction as already described, using both GED materials and applied literacy texts. Students received a total of 100 hours of instruction over six months (two sessions per week of two hours each). Students in the control group learned from a single instructor. Students in

the experimental group had a primary instructor for basic skills and a counselor/instructor to conduct the career readiness portion of the curriculum. Also, a third instructor conducted two pre-instructional sessions on study skills for the target group. The GED practice test as well as post testing on the TALS and ABLE was given at class completion. During the last three months of the program, students had the opportunity to continue their study independently, using the program's GED books and software. In addition, student follow-up via telephone interview was conducted during this period. A coordinator managed all phases of the program as well as conducted student testing and the independent study lab.

Complete or additional copies of the report may be obtained from:

Advance or Division of Adult Basic/Literacy Education Programs Commonwealth of Pennsylvania Department of Education 333 Market Street Harrisburg, Pennsylvania 17126-0333

-3-

STATEMENT OF THE PROBLEM

-4-

In its 1986 Literacy: Profiles of America's Young Adults, the National Assessment of Educational Progress reported testing of approximately 3600 individuals with tasks designed to simulate what people encounter at work, home, and in the community. It concluded that: "adult literacy programs aimed at developing comprehension skills are frequently based on elementary school reading models that, for the most part, are restricted to the use of narrative texts. Results from this and other studies suggest that primary emphasis on a single aspect of literacy may not lead to the acquisition of the complex information processing skills and strategies needed to cope successfully with the broad array of tasks adults face."

Furthermore, the results of this study were sufficiently valid and compelling that they have led the way to a National Literacy Survey (NALS), begun in February of 1992, using the same array of tasks. Twelve states, including Pennsylvania (with the PALS), collected state samples at the same time to provide for statewide baseline data and comparison to national results. Educational Testing Service designed the instruments and also produced the TALS, which are now commercially available. These tests assess appropriate prose, document and quantitative literacy tasks for local programs and insure local results can be compared with regional and national statistics.

Typical ABE/GED programs begin with a standardized reading and math test, such as the ABLE or TABE. Scores, in grade equivalent format, are then used to drive instructional programs and measure growth. Instruction proceeds with emphasis on vocabulary and comprehension (reading); spelling, grammar, usage on essay production (writing); and number operations with whole numbers, fractions, decimals and percents (mathematics). Curriculum materials infrequently relate these skills to the tasks that adults perform routinely. Most instruction clings to the academic (school) format rather than the applied (real life) format.

In Facilitating the Flow of Information Between the Business and Education Community (a report for the U.S. Department of Labor), Jorie Philippi states: "Traditional academic reading can be categorized as 'reading to remember information,' while workplace applications primarily are those in which the worker uses readily available job print materials intermittently while performing a job task. The type of reading done on-the-job can be categorized as 'reading to do' and utilizes the reading process for locating information and for using higher level thinking strategies to problem solve. Occupational writing processes differ, too. They place less emphasis on academic criteria like grammar and spelling and focus more on skills in organizing clear, readable products; accurately summarizing events; and mastery of thinking skills which enable

ERIC Full Ext Provided by ERIC -5-

analysis, elaboration, and extension of written ideas. Workplace applications of mathematical processes for calculating information and for problem solving also go beyond the traditional basics of number concepts and computation skill-drill; competent workers need math proficiency levels that enable them to use math concepts to reason and interpret data."

-6-

Adult basic education programs experience attrition at an alarming rate. Data from programs across the country show an average of 50% dropout in typical 100 hour programs. This project hypothesized that traditional ABE academicoriented programs do not meet the needs of adults in their daily lives and they, therefore, leave in record numbers. In early 1990's Lehigh County Community College annually served more than 500 adults in basic skills programs, 95% of whom are under the age 45. With the exception of one workplace literacy program and one job-specific literacy training class, its curriculum follows the standard ABE formula. In both population served and curriculum, it is representative of Pennsylvania ABE program. Where a population is at the peak of its working years (and will continue to be so for some time), our programs should be better suited to rapid acquisition of the skills needed to be successful in living, and finding and keeping a job.

-9

GOALS AND OBJECTIVES

-7-

The goal of this program, therefore, was to generate data which would support a change in focus for ABE/GED programs, from a traditional approach to an emphasis on applied literacy skills. The questions which directed the research effort were:

- ----Can the Tests of Applied Literacy Skills (TALS) be successfully used as the primary measurement device in ABE/GED programs?
 - -Can the scores on the TALS be used to predict success on the GED? If so, what scores would indicate success?
 - -How does pre/post growth on the TALS compare to pre/post test data on the ABLE?
- ----What is the literacy level of Lehigh County Community College GED Preparation attendees? How do they compare to Pennsylvania and national results?

----Does instruction which focuses on applied literacy skills work better than a traditional program in meeting national, local and personal goals? -Are student learning gains greater? -Do more students stay in the program longer? -Is their everyday attendance generally better?

TREATMENT

Although students in the experimental class received an alternate treatment, it departed slightly from the original plan.

Prior to commencement of instruction, experimental students only were given two sessions on study skills to assist them in targeting learning goals and styles, desired outcomes and methods for studying material.

Once instruction began with both groups, it was expected that the experimental group would spend 1-1/2 of its 12 hours per month in career readiness skills. A counselor/instructor did indeed meet with students during October, November and December. Feedback from the instructor and students, however, indicated that this time could be more profitably spent in regular classroom instruction.

Computer skills were specified in the original proposal as another instructional area. It was intended that students would learn word processing applications with computers in conjunction with their essay writing. It was also hoped that GED-specific software could afford additional practice. Lack of time made this a more limited effort. Moreover, lack of funds and confusion in the ordering process delayed the arrival of the GED software until late January. In fact, this software was only fully used upon completion of classes during the independent study GED lab.

11

- 8 -

Those selected as the main focus for the experimental group, applied literacy skills texts did not provide adequate initial teaching of the skills. They required that the student first be proficient in the skill in order to use it in its application form. This was especially true in mathematics. For example, one must first understand and be able to compute percents before one can determine a 30% discount on an item.

-9-

FINDINGS

-10-

Objectives 1.0

Using pre and post test data from approximately 75 -100 students, the project will investigate the correlation between the ETS Tests of Applied Literacy Skills (TALS) and the GED Official Practice Test to establish what, if any, scores on the TALS are predictive of success on the GED. <u>Evaluation Procedures</u>

The research department of the college was asked to perform a statistical analysis of the data. They used a regression model to determine if eighteen (18) student scores on the Tests of Applied Literacy Skills (TALS) -Prose and Quantitative - could be used to predict scores on the GED Practice Subtests - Literature and the Arts and Mathematics. The report, including the analyses performed, are included in Appendix A.

<u>Results</u>

Matching scores for both tests were available for eighteen students. The results of the regression analyses indicate that:

- 1. TALS Prose Literacy scores cannot be used to predict scores on the GED Practice Literature and the Arts subtests.
- 2. There is a moderate correlation between the TALS Quantitative Test and the GED Practice Mathematics subtest, but the former should not be considered a strong predictor.
- 3. The small sample size may not have been sufficient to be confident of results.

Objective 2.0

Using pretest data from the TALS, scores of approximately 75-100 students will be analyzed and compared to state and national proficiencies in applied literacy skills with conclusions drawn about Lehigh County adults. Evaluation Procedures

Results from the national and state literacy studies were not available at this writing. Pretest scores on the ETS Document Test, Form A, were analyzed for 71 students from both classes. Percentages at ETS - designated Levels 1 through 5 were calculated as well as means. These figures were then compared to the results of the 1990 ETS Study completed for the U.S. Department of Labor (Beyond the School Doors: The Literacy Needs of Job Seekers Served by the U.S. Department of Labor).

<u>Results</u>

Figure 2.1 on the following page shows that more project students (98.6%) scored at Level 2 or above on the Document Literacy Test when compared with a national sample of JTPA (86%) and unemployment service applicants (87%).

Figure 2.2 shows average scores on Document, Prose and Quantitative Literacy Tests for GED candidates locally and nationally. Since ETS reports a standard deviation of seven (7) points when means are used, there are really no substantial differences in the project populations and DOL participants.

14

-11-

Considering the two comparisons, it would appear that more Lehigh County GED candidates have mastered practical literacy tasks than participants in the DOL study. They are also at equivalent levels to other GED candidates nationally.

-12-

Verifying Appl Tests of Appli Comparison of Projec	ied Literacy Ski ed Literacy Ski t Participants	lls (VALS) Pr lls, Document and Dept. of 1	oject Test Labor Study			
Document Literacy Scale Scores (0-500)	LCCC 1993 VALS Students	DOL Job Seekers 1990 Unemployed JTPA				
Level 1 (225 or less)	1.4%	13%	14%			
Level 2 (226 - 275)	43.7%	30%	378			
Level 3 (276 - 325)	38.0%	36%	35%			
Level 4 (326 - 375)	16.9%	19%	12%			
Level 5 (376 or more)	0%	28	18			

FIGURE 2.1

-13-

FIGURE 2.2

Ver Compar	ifying Appli Tests c ison of Proj	ed Literacy of Applied Li ect Students Mean Scor	Skills (VALS) P teracy Skills and Dept. of La ces	roject abor Study		
TALS Test	LCCC VALS Par	1993 ticipants	Total Pop. DOL Study	JTPA Particip Studying for GED		
Document	(n=71)	284.93	274.3	270.5		
Prose	(n=69)	292.61	284.2	274.6		
Quantitative	(n=66)	281.82	280.6	273.1		

-

Objective 3.0

Between pre and post testing, students in the experimental group receiving applied literacy instruction will demonstrate significantly greater performance when compared with a control group receiving a traditional program in two areas:

-retention - fewer students will drop out of the experimental program and/or the percent of attendance will be greater than the control group, as verified by attendance logs

-target students will show greater pre/post learning gains as measured by the TALS and the ABLE

Evaluation Procedures

For **retention** information, the project maintained attendance sheets with students signing in each nightly session. At the end of the program, the number of sessions attended per student was calculated and various percentages derived.

For achievement information, students were pre and post tested using the ABLE and TALS. The college's research office compared pre and post test scores, using a t-test on mean scores, to determine if there were statistically significant differences.

-in academic growth from pre to post for either group -in the amount of growth achieved when comparing experimental to control

Data and analyses may be found in Appendix A.

Because of the drop-out rate in both programs, the project analyzed two additional types of information:

-14-

-how project drop out rates compared to another evening GED program at the college

-how dropout students compared to completers in terms of age and pretest scores (age as an indicator of maturity and pretest scores as an indicator of readiness for GED preparation classes)

<u>Results</u>

Figure 3.1 presents **attendance** data for the two classes. The experimental class had one less session than the control due to a severe snowstorm.

In reviewing the number/percent of students completing the program, there was no substantial difference between the experimental (41%) and control (40%) groups.

Data were also analyzed to ascertain frequency of attendance. In this case, the control group (43%) fared slightly better than the experimental group (41%) in the amount of students attending more than half of the sessions. Control group students also averaged approximately 1-1/2 more sessions than experimental (19.94 vs. 18.29).

In academic or basic skills, Figure 3.2 summarizes the analyses of students pre/post scores on the TALS and ABLE tests. Both groups showed significant pre/post gains indicating that learning had occurred. The experimental group's gain was more noteworthy in traditional basic skills (as measured by the ABLE) and the control group's gain more significant in applied literacy skills (as measured by the TALS). This is contrary to the project's hypothesis.

When compared to <u>each other</u>, the analysis of data showed that there was no significant difference in the gains

18

-15-

of the experimental and control groups on the ABLE or TALS or on their final scores on the GED Practice Test.

-16-

High **dropout rates** in GED programs are a concern nationwide. The project looked at how its students compared to others enrolled in a fee-based Lehigh County Community College GED class, with Figure 3.1 presenting the data. The comparison reveals that while more fee-based students (54%) than project students (42%) completed the program, the feebased program was much shorter (24 versus 39 and 40 sessions). Perhaps a more valid comparison would be the percent of students completing half or more sessions: 29% in fee-based and 42% for project.

Figure 3.3 looks at **age and pretest scores** for dropouts and completers. With the exception of the Document Literacy Test, there were no glaring differences in the pretest means of dropouts and completers. There was, however, a startling difference in average age of program completers (39.24 years) when compared to those who did to finish the program (26.75 years). Sex may also be a factor since the number of women completing the program (14) was nearly triple that of men (5).

-17-			
FIGURE	3	•	1

--- -

•

Verifying Applied Liter Summary of Atter	acy Skills ndance Infor	(VALS) Proje mation	ect
Item	Project Exp,	<u>Students</u> Control	<u>Compariso</u> <u>D</u> <u>Class</u>
Total No. of Class Sessions	<u>39</u>	<u>40</u>	24
Number of Students Enrolled	34	35	<u>28</u>
(Number) Percent of Students Completing Class	<u>(14)</u> <u>41</u> %	<u>(14)</u> <u>40</u> %	<u>(15)</u> 54 %
(Number) Percent of Students Attending at least 50% of sessions at least 20 sessions	<u>(14) 418</u> (14) 418	<u>(15) 438</u> (15) 438	<u>(15) 54</u> (8) 29 %
Average Number of Sessions Attended	18.29	<u>19.94</u>	12.68

FIGURE 3.2

<u>Verifying Applied Lite</u> <u>Summary of Stat</u> <u>Significant Differen</u>	eracy Skills (VALS) istical Analyses for Ces on Standardized	Project Tests
Test	Comparison of Experimental and Control Group Gains	<u>Comparison of</u> <u>Pre/Post Gains</u> <u>Within Group</u>
Official GED Practice Test	No Difference	
ABLE Tests Reading Comprehension Number Operations	No Difference No Difference	Exp. Group Significant Exp. & Control Group Significant
Tests of Applied Literacy Skills Document Literacy Prose Literacy Quantitative Literacy	No Difference No Difference No Difference	None significant Exp. & Control Group Significant Control Group Significant

Verifying Applied Literacy Skills (VALS) Project Comparison of Dropout and Completer Indicators									
P	retest Mear	Scores							
All Completers Tests Dropouts Total Exp Control									
ABLE Reading Comprehension	8.8	8.81	8.78	8.81					
Number Operations	7.23	7.26	7.14	6.84					
TALS Document	281.02	293.64	295.00	291.00					
Prose	291.27	295.45	300.00	289.00					
Quantitative	285.68	286.82	294.00	277.00					
	Age Me	ans							
	26.75	39.24	41.00	37.67					

FIGURE	3.	3

-18-

Objective 4.0

Immediately and two months following program completion the percentage of target students indicating success in meeting personal and work-related goals will significantly exceed that of control group as evidenced by a comparison of responses on a student survey.

-19-

Evaluation Procedures

Students were contacted by telephone using the followup Survey in Appendix C. All contacts were made three months following program completion, in June of 1993. Results

Of the 70 students originally enrolled, 35 were reached by telephone. Of the 35 who could not be reached, 16 had either moved or phones were disconnected. Although the remaining 19 were contacted repeatedly, they did not answer.

Figure 4.1 presents figures for the Student Follow-up Survey. Question 2 is the critical one for this objective. In general, most of the students reached had definable career goals - the majority of which fell in the health fields. Slightly more of the control group (17) than experimental group (14) had specific career goals.

For students to make progress toward their career goal, it was assumed that the GED was an important factor. Therefore, three steps of progress were considered: readiness to take the test, completion of the test, and movement toward the next level (enrollment in training o. college, hiring for a career position). The amount of

progress made by experimental and control groups in meeting personal goals was essentially the same. That is, 12 experimental and 11 control students had achieved at least one step toward reaching their goals.

FIGURE 4.1

:

Verifying Applied Literacy Skills (VALS) Project Student Followup Survey

	<u>Total</u>	<u>Experimental</u>	<u>Control</u>
Number initially enrolled	70	34	36
Survey followup Number contacted Number not contacted	35 35	18 17	17 18
 What are you doing now? working nothing going to school recovering from illness 	22 7 3 3	11 4 1 1	11 4 2
2. What is your career goal medical/health career business trade/technical public service no goal stay in current career	1? 14 7 4 2 2 2	5 2 2 1 2 2	9 5 2 1
2a. Progress in meeting goa Step 1 - ready for GED Step 2 - completed GED Step 3 - moved to next	1 13 9 level 2	6 4 2	7 5
3. Why do you want a GED? qualify for better job go on to higher educat serve as model for kid personal satisfaction other	13 ion 23 is 3 7 1	6 13 3 3 1	7 10 4
4. When will you take the already did ASAP within 6 months within 1 year no specific date	test? 11 6 9 3 4	4 3 8 1 1	7 3 1 2 3

.

Other Data Evaluation Procedures

Information regarding the materials and treatments offered the experimental and control groups was also collected in an effort to pinpoint areas of success and/or difficulty.

-23-

<u>Findings</u>

At the outset of the program there were insufficient numbers of the traditional GED books for all students. The college intended to use Steck-Vaughn GED texts which it had on hand and ordered additional books to total the number expected in the program. Unbeknownst to the college, Steck-Vaughn had revised the GED book and was only printing the new edition. Therefore, instructors were faced with the necessity of using two different texts until additional books could be delivered - about six weeks later. Even after these were received, they were shared by the two classes and there were insufficient books for students to take home for study.

Although the project design called for the experimental group to receive instruction which was much more applied, treatment (content, format) should have been more different than what took place in the project.

-the experimental group received 2 sessions devoted to study skills prior to instruction
-the experimental group received periodic counseling sessions (1x/month for 1'1/2 hours)
-only the control group received instruction in Science and Social Studies
-the experimental group used Simon & Schuster Applied Literacy Skills materials for extra practice and homework

Many students were frustrated by the differing skill levels of their classmates; the irritation being particularly exacerbated in the study of mathematics. Those students lacking math skills found the pace too fast. Those who only needed review became bored when an instructor spent extra time teaching and reteaching. While both classes had equally varied abilities, the frustration seemed more pronounced in the experimental class (Figure 4.1, question 6) where students commented on the need for greater individualization or small group instruction. A review of instructor and student comments shows that both found the 100 hours of instructional time too short.

Finally, to provide for adequate sample sizes, both classes began with more than 35 students. It was expected that the dropout rate would follow national averages at fifty percent. However, beginning a research project with this number of students did pose logistics and instructional difficulties for all staff.

CONCLUSIONS

-25-

The original intention of the project was to provide an alternative curriculum to the traditional ABE/GED program, with the expectation that it would be more meaningful and useful to adult students. It assumed a strong correlation between applied literacy skills and the skills measured by the GED. It hypothesized that student learning gains would be equal or better, retention rates would improve and personal goals would be better served. It also sought to collect and compare local literacy information to larger state and national samples.

One of the four objectives stated in the project was completely met: 1.0 to investigate the correlation between the TALS and the GED practice test. Regression analysis showed little to no correlation between the two measures.

Another objective was partially met: 2.0 to compare project students' literacy levels to national and state samples. Data from national and state literacy surveys were not yet available. The project, therefore, compared its students to the most recently available literacy studies completed by the Department of Labor with unemployment and JTPA participants in 1990. LCCC's GED students average scores are comparable to the DOL study, although it appears that fewer local students score at the lowest levels.

Two objectives relating to student performance were not met: 3.0 greater retention rates and greater pre/post

learning gains; and 4.0 greater goal accomplishment. There were no major differences between the experimental and the control groups.

Ultimately, there was a faulty assumption in the project - more at the philosophical than practical level. It was that preparation for the GED is equivalent to preparation for the world of work. In fact, this is probably not the case. The GED, although revised in the last ten years to measure critical thinking skills, still focuses on the more academic approach to the use of basic skills. As a measure of high school competence, it is proper that it do so. At this point in time, there still appears to be a mismatch in formal schooling outcomes and on-the-job needs for basic skills. Until that is resolved, each program must locally determine what goals it seeks to reach for its students.

Readers are asked to be cautious of hard conclusions for several reasons: the variable of two different instructors confounding results and the very small sample size. In terms of the questions originally asked by the project, a number of tentative answers were reached.

Question 1: Can the TALS be successfully used as the primary measurement device in ABE/GED programs? Answer: The TALS cannot be used as the primary measurement if GED preparation is the intended outcome. If, however, the goal is job training, the TALS would be the instrument of choice.

-26-

Question 2: What is the literacy level of Lehigh County attendees? How do they compare nationally and locally? Answer: Based on the scores of 71 students, most of the college's GED students were at a literacy level which would qualify them for trade, technical and clerical work at the very least. They compare favorably to job seeking candidates in the DOL study. Since data from the national and state literacy surveys were not yet available, no comparisons could be made.

Question 3: Does instruction which focuses on applied literacy skills work better than a traditional program in meeting national, local and personal goals. Answer: Results from the project are not adequate to resolve this question. While learning gains occurred for both groups, neither performed significantly better than the other.

-27-

APPENDIX A

. . .

Data Summaries and Statistical Analyses

. .

Lehigh County Community College Memorandum

To: Joan Lippiac From: Robyn Dickinson Kiefer

Date: May 20, 1993

Subject: PDE Project "Verifying Adult Literacy Skills" Statistics - Part 2

Enclosed are the results of the second statistical analysis which you requested for the PDE literacy project. All analyses were conducted using a regression model to determine if student scores on the ETS subtests (Prose Literacy and Quantitative Literacy) could be used to predict their scores on the GED subtests (Literacy and the Arts and Mathematics).

ETS Prose Literacy and GED Literacy and Arts

The results of the regression analysis indicate that the ETS subtest scores *cannot* be used to predict the students scores on the GED subtest. Several components of the analysis suggest that this data does not exhibit a linear relationship which is required for creating a prediction equation (see attached). In this case, the small size of the sample (n=18) could be confounding these results.

ETS Quantitative Literacy and GED Mathematics

The results of this regression analysis indicate that the ETS subtest scores can be used to predict the students scores on the GED subtest. The prediction equation which was derived follows:

GED Mathematics Score = 22.08 + .096 x ETS Quantitative Literacy Score

Several components of the analysis indicate that this equation may be used with the following cautions. A moderate correlation (r = .544, p = .02) was found to exist between the predicted and observed values for the GED subtest scores. Using this equation based on the ETS Quantitative Literacy score will allow you to account for 30% of the variability found in the students GED Mathematics score. Thus, the ETS subtest scores should not be considered a strong predictor of the students scores on the GED subtest.

Lehigh County Community College Memorandum

To: Joan Lippiac

From: Robyn Dickinson Kiefer

Date: May 3, 1993

Subject: PDE Project "Verifying Adult Literacy Skills" Statistics

Enclosed are the results of the statistical analysis which you requested for the PDE literacy project. Overall comments: All analyses were conducted using the t-test to compare the mean scores of the control and experimental groups as well as the pre- and post-test scores within each group. When using the 't' statistic with samples of this size, results should be reported with caution as significant differences may not have been detected due to the small number of cases in the sample. An additional caution in this study, the control and experimental groups received instruction from different teachers; this should be considered a confounding variable when reporting the results.

GED Practice Test

No statistically significant differences were found between the experimental and control groups for the mean overall test score or in any of the mean subtest scores.

ABLE Test

Statistically significant differences were found in the comparison of pre- and post-test means for the following cases: the control group Mathematics Operations (p = .005), the experimental group Reading Comprehension (p < .05), and the experimental group Mathematics Operations (p = .01) tests. These pre- and post-test comparisons were analyzed using a paired samples t-test.

A comparison of the experimental and control group mean test scores was then conducted using the independent samples t-test. It was determined that, in terms of the ABLE test, both groups were similar prior to instruction in measures of reading comprehension and mathematics operations. Analysis of the post-test means yielded no significant differences between the experimental and control group on these measures.

ETS Test

Statistically significant differences were found in the comparison of pre- and post-test means for the following cases: the control group Prose Literacy (p < .01), the control group Quantitative Literacy (p = .05), and the experimental group Prose Literacy (p = .05). These pre- and post-test comparisons were analyzed using a paired samples t-test.

A comparison of the experimental and control group mean test scores was then conducted using the independent samples t-test. It was determined that, in terms of the ETS test, both groups were similar prior to instruction in measures of document literacy and prose literacy. Using the mean quantitative literacy subscores, the groups were found to be significantly different prior to instruction thus, no post-test comparison was conducted using this measure. Analysis of the post-test means yielded no significant differences between the experimental and control groups on the document literacy or prose literacy subtests.

LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS"

Pretto Post ETS Gains; October 1992 through February 1993

	Oct	ober	1992 t	hrou	gh Feb	oruary	199	3	-je-	
					Lif h	15			YKAT	
	DOCUM	ENT_LITE	RACY	PROSE	יק צ Literaci	<u>i</u> 7	QUANT	ITATIVE I	LITERACY	Cice
Student	Pro	Post	Gain	Pre	Post	Gain	Pre	Post	Gain	
										÷
Experimental Class - Jean Dy	er, Ins	tructor								
	260	280	20	270	327 0)	0	290	270 j	(-20)	
	320	350	30	320	-350	30	310	330 /	20	
	310	290	(-20)	290	360 .	70	280	250 [:]	(-30)	
	310	320	10	310	300 1	(-10)	280	2 9 0 i	10	
	300	260	(-40)	280	250 ,	(-30)	300	250	(-50)	
and the second sec	350	350	0	310	340 1	30	300	390 i	90	
	260	300	0	270	360 /	90	290	250 ·	(-40)	
	280	280	0	290	290	0	280	290	10	
	340	320	(-20)	310	330 ₍	20	300	320	20	
	270	290	20	320	310 ((-10)	290	300	10	
	280	350	70	330	340 -	10	300	270	(-10)	
	260	300	40	290	310 ·	20	290	330	40	
	300	300	10	310	34 0 °	30	310	320	10	
Hean (N=13)	295	307	12	279 300	319	40	294	297	3	
<u>Control Class -</u> Joseph Corte	ese, Ins	tructor								
	270						• • •		• -	
	270	310	40	290	290 ,	0	260	270	10	
	270	290	(-10)	250	280 /	30	250	260	10	
		340	70	300	310	10	280	280	0	
topoptica	300	200	1.40	222	380	10				
	320	280	(-40)	310	370	60	300	360	60	
	320 370	280 350 200	(-40) (-20)	310 320	370 · 350	60 30	300 300	360 350	60 50	
	320 370 250	280 350 290	(-40) (-20) 40	310 320 280	370 - 350 280 -	60 30 0	300 300 270	360 350 260	60 50 (-10)	
	320 370 250 250	280 350 290 300	(-40) (-20) 40 50	310 320 280 280	370 - 350 280 - 290 -	60 30 0 10	300 300 270 280	360 350 260 280	60 50 (-10) 0	
	320 370 250 250 290 300	280 350 290 300 290 . 290	(-40) (-20) 40 50 0 (~10)	310 320 280 280 300 270	370 350 280 290 350 290	60 30 0 10 50 20	300 300 270 280 270 280	360 350 260 280 320 290	60 50 (-10) 0 50 10	
Mean (N=9)	210 320 370 250 250 290 300 291	280 350 290 300 290 . 290 304	(-40) (-20) 40 50 0 (~10)	310 320 280 280 300 270 289	370 350 280 290 350 290 7	60 30 0 10 50 20	300 300 270 280 270 280	360 350 260 280 320 290	60 50 (-10) 0 50 10	

comparie prie + post + control lexperimental + control lexperimental

• • • •

C:15pss/lippiccl C:15pss/lippiccl

LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS"

> GED Official Practice Test + February 1993

ALIT.

	GED Official Practice Test						
	February 1993			CAT TH		<u>.</u>	
				۲. ^س نان ۱۰	//*	Ove	
				19 0.	alit.		1
	Writing Skills	Social Studies	Science	Mathematics	and the Ar	ts' <u>Total</u> Av	erage
1,							
Experimental Class - Jean Dye	r, Instructor						
	55	49	53	53	56 🕔	266	53.2
	41	43	45	50 ·	41 -	220	44.0
	55	20	38	44	49	206	41.2
	59	57	50	· 53	55	274	54.8
	38	47	51	55	43	234	46.8
	44	41	53	46	52	236	47.2
	51	59	58	55 [•]	53	276	55.2
	53	53	51	` 58	48	263	52.6
	48	53	52	53	48	254	50.8
	43	52	51	53 ×	50 ·	249	49.8
Mean (N×10)	48.7	47.4	50.2	52	49.5	247.8	49.56
Control Class - Joseph Corte	se. Instructor						
	33	48	42	44 ·	42	209	41.8
	46	49	33	45	41	234	46.8
	46	48	50	50	47	241	48.2
	51	68	60	66	55	300	60.0
	40	61	60	61	60 ·	290	58.0
	38	46	43	36	43	206	41.2
	- 45	47	45	51	52 ÷	239	47.8
	46	42	42	44	45	214	42.8
Mean (N=8)	44.1	51.1	49.4	49.6	48.1	241.6	48.33

controlotions subtedis + terterlo

(:1 SPSSILIPPIAC) PREDICT. SYS

.

		A fresh	Dit	7.4	7.1
I	FNAME	ETSPROSE	GEDLIT	etsquan	GEDMATH
		350	, 56	330	53
		360	41	250	50
·		300	49	290	44
		340	55	390	53
- <u></u>		360	43	250	55
		290	52	290	46
		310	53	300	55
		340	48	270	58
		310	48	330	53
		340	50	320	53
		290	42	270	44
		280	41	260	45
		310	47	280	50
		370	55	360	66
	<u> </u>	350	60	350	61
		► 280	43	260	36
		350	52	320	51
		290	45	290	44

18

5.00 September 201

Number of cases read =

ERIC

Number of cases listed =

18

MORE

dep var = yakis ind vovi = Xaxis

37

ETS PROSE LITERACY SUBSCORE

MORE

18 cases plotted. Regression statistics of GEDLIT on ETSPROSE: Correlation .43461 R Squared .18889 S.E. of Est 5.26966 Sig. .0715 Intercept(S.E.) 22.88750(13.52730) Slope(S.E.) .08042(.04166)

GED Lit Score = 22.89 + .03 (ETS Brove Lit Score)

lacksquare	*	*	*	*	M	υ	L	T	I	P	L	E	R	E	G	R	E	S	S	I	0	N		*	*	*	*		
Listwise	De	ele	eti	.on	of	M	iss	sir	ŋġ	Da	ta	L																	
Equation	Nı	ımk	ei	: 1		De	epe	end	ler	nt	Va	riab	le	!	•	Ģ	E)L]	T		GI	ED	LI	TE	RA	CY		ARTS	SUBSCO
Block Nur	abe	er]		Met	tho	bd	:	Er	nte	er		E	TS	SPF	209	SE												

MORE

* * *	* MULT	PLE REGR	ESSION	* * * *
Equation Number	r 1 Depende	ent Variable (GEDLIT GED LI	TERACY & ARTS SUBSCO
Variable(s) Ent 1 ETSPI	cered on Step ROSE ETS PROS	Number SE LITERACY SUBSC	ORE	
Multiple R R Square Adjusted R Squa Standard Error	.43461 .18889 are .13820 5.26966	-> correlation coeffici >> und varia Explaines	פריד ואבדנטניה ו דאנרא 1990 כריה נותנה ווידע	icted + abs. Served belows in mic in dys val
Analysis of Var	riance			
	DF	Sum of Squares	Mean Square	2
Regression	1	103.46944	103.46944	1 .
Residual	16	444.30833	27.76927	7
F = ··· 3.72	604 Sig	nif F = .0715		Variation and a finite of

cannet reject the control properties that the a

.

MULTIPLE REGRESSION * ÷ * *

Equation Number 1 Dependent Variable.. GEDLIT GED LITERACY & ARTS SUBSCO

		Variable	es in th	ne Equation	~	
Variable	نیحر مار <u>؛</u>	в	- SE B	95% Confdno	e Intrvl B	Beta
ETSPROSE (Constant)	-5 •08041 22•88750	.7 .0	41660 27303	007899 -5.789101	.168733	.434614
, , , ¹ ⁴	A. Licept			4 INTE IN	e. (Included ZE ic	
Variable	VC. WE T	Sig T		- (0.5 %) 16 jec 	this that here of the this will hyp	$E_{sig} = 0.500 + 0.500$
ETSPROSE 🍣 (Constant)	1.930 1.692	.0715 -9 .1100	the s	slope is zero m	the population (cetionscharge)	he vicility. A

End Block Number 1 All requested variables entered.

Aleth

MORE

ETS QUANTITATIVE SUBSCORE

MORE

12 cases plotted. Regression statistics of GEDMATH on ETSQUAN:relation .54400 R Squared .29593 S.E. of Est6.14078 Sig. .0196Intercept(S.E.) 22.07921(11.22449) Slope(S.E.) .09604(.03703)

Equicition

•;

E D

М

A

т

H E

M A

Т

I C

S

GED Math Score = 22.05 + .096 (ETS Quantitative Scene)

ane "plucjerd in" to equation - the results as mured)

MULTIPLE REGRESSION Listwise Deletion of Missing Data GEDMATH Equation Number 1 Dependent Variable.. GED MATHEMATICS SUBSCORE Enter ETSQUAN Block Number 1. Method: MORE MULTIPLE REGRESSION GED MATHEMATICS SUBSCORE Equation Number 1 Dependent Variable.. GEDMATH Variable(s) Entered on Step Number ETS QUANTITATIVE SUBSCORE 1.. ETSQUAN .54400 -> conviction confficient between predicted tobstind values in Multiple R medici .29593 -R Square by individing the solution of valiability industrial Adjusted R Square .25193 6.14078 Standard Error Analysis of Variance DF Sum of Squares Mean Square Regression 253.59791 253.59791 1 Residual 603.34653 37.70916 16 Signif F = .0196 6.72510 F = Ly can reject will hypothesis that the a 15 NO LINCOL, Elation ship interesting valicity E)

MORE

42

* * * * MULTIPLE REGRESSION * * * * Equation Number 1 - Dependent Variable.. GEDMATH GED MATHEMATICS SUBSCORE

*** *** *** *** *** *** ***	197 - CD - Coi	- Variables in	the Equation -	ی چه خه هه چه هه چه ها په ها په خه چه ه	عب هد حد هه هه جه جه جه جه
Variable	slove	B SE B	95% Confdi	nce Intrvl B	Beta
ETSQUAN (Constant)	.09604 22.07920	40 .037034 08 11.224495	.017531 (-1.715657	.174548 45.874073	.543997
	intricept		Wite neal date -Sappents sto		n Ny satisfication fican
variable	Slore I	Sig T			
ETSQUAN	2.593	.0196 -> cam	reject will hy, od	heaval at the valu	x cit +tv 510, X;
(Constant)	1.967	.0668	is zere in the	, so, sulation	$i $ λ
			(a li	ineau rokatio. v shii	, s exists)
End Block	Number 1	All requeste	d variables ent	tered.	

LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS"

GED Official Practice Test + February 1993

`	Writing Skills	Social Studies	Science	Mathematics	and the Arts	Total A	verage
1/ ·							
<u>Experimental Class - Jean Dye</u>	r, Instructor						
Ciaman and an and a state	55	49	53	53	56	266	53.2
	41	43	45	50	41	220	44.0
	55	20	38	44	49	206	41.2
	59	57	50	53	55	274	54.8
	38	47	51	55	43	234	46.8
	44	41	53	46	52	236	47.2
	51	59	58	55	53	276	55.2
	53	53	51	` 58	48	263	52.6
	48	53	52	53	4 8	254	50.8
	43	52	51	53	50	249	49.8
Mean (N=10)	48.7	47.4	50.2	52	49.5	247.8	49.56
Control Class - Joseph Corte	se, Instructor						(
	33	48	42	44	42	209	41.8
	46	49	53	45	41	234	46.8
	46	48	50	50	47	241	48.2
	51	68	60	66	55	300	60.0
	48	61	60	61	60	290	58.0
	38	46	43	36	43	206	41.2
	45	47	45	51	52	239	47.8
	46	42	42	44	45	214	42.8
Mean (N=8)	44.1	51.1	49.4	49.6	48.1	241.	6 48.33

ERI

ED Test - Control Groups

AVGSCORE TEST AVERAGE (INDIVIDUAL)

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	41.2	1	12.5	12.5	12.5
	41.8	1	12.5	12.5	25.0
	42.8	1	12.5	12.5	37.5
	46.8	1	12.5	12.5	50.0
	47.8	1	12.5	12.5	62.5
	48.2	1	. 12.5	12.5	75.0
	58.0	1	12.5	12.5	87.5
	60.0	1	12.5	12.5	100.0
	Total	8	100.0	100.0	

TEST AVERAGE (INDIVIDUAL) AUGSCORE Count Midpoint 38.5 0 0 40.0 2 41.5 1 43.0 0 44.5 0 46.0 3 47.5 0 49.0 0 50.5 0 52.0 0 53.5 55.0 0 56.5 0 1 58.0 1 59.5 0 61.0 ٩. 62.5 ..I...+...I.../+...I I ...I...+.. Ι 5 0 1 2 3 4 Histogram frequency MORE GSCORE TEST AVERAGE (INDIVIDUAL) 48.325 Median 47.300 7.135 Mean Std dev Variance 50.914 18.800 Range 45

MORE

. .

MORE

MORE

AVGSCORE TEST AVERAGE (INDIVIDUAL)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$, O
41.2 1 10.0 10.0 10.0 44.0 1 10.0 10.0 20.0	, 0
44.0 1 10.0 10.0 20.	
	.0
46.8 1 10.0 10.0 30	. 0
47.2 1 10.0 10.0 40	. 0
49.8 1 10.0 10.0 50	. 0
50.8 1 10.0 10.0 60	.0
52.6 1 10.0 10.0 70	. 0
53.2 1 10.0 10.0 80	. 0
54.8 1 10.0 10.0 90	.0
55.2 1 10.0 10.0 100	.0
Total 10 100.0 100.0	

AVGSCORE TEST AVERAGE (INDIVIDUAL)

FKI(

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: AVGSCORE TEST AVERAGE' (INDIVIDUAL)

			Number of Cases	Mean	Standard Deviation	Standard Error
(ientrol	Group	1	8	48.3250	7.135	2.523
Exp.	Group	2	10	49.5600	4.683	1.481

		Pooled	Variance Es	stimate	× Separat	e Variance E	stimate
F Value	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.
2.32	.238	44	16	.664	42	11.58	.681

No sig. difference.

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: WRITESKL WRITING SKILLS SUBSCORE

	Number		Standard	Standard
	of Cases	Mean	Deviation	Error
Control Group 1	8	44.1250	5.793	2.048
Group 2	10	48.7000	6.977	2.206

		Pooled	Variance Es	stimate	Separat	e Variance H	Stimate
F Value	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.
1.45	.638	-1.49	16	.156	-1.52	15.96	.148

No sig. difference

MORE

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: SOCSTUDY SOCIAL STUDIES SUBSCORE

	Number		Standard	Standard	
	of Cases	Mean	Deviation	Error	
Control Group 1	8	51.1250	8.725	3.085	
Exal Group 2	10	47.4000	11.177	3.535	

F
Value2-Tail
ValueT
TeedomDegrees of 2-Tail
Prob.Separate Variance Estimate1.64.526.7716.452.7916.00.439

No sie, difference

MORE

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

ERIC Pull Text Provided by ERIC t-test for: SCIENCE SCIENCE SUBSCORE

	Number of Cases	Mean	Standard Deviation	Standard Error
Exted Group 1	8	49.3750	7.633	2.699
Expl Group 2	10	50.2000	5.350	1.692

Pooled Variance Estimate | Separate Variance Estimate 2-Tail F t Degrees of 2-Tail t Degrees of 2-Tail Value Prob. Value Freedom Prob. Value Freedom Prob. -.27 16 2.04 .317 .791 -.26 12.13 .800

No sey difference

MORE

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: MATH MATHEMATICS SUBSCORE

			Number of Cases	Mean	Standard Deviation	Standard Error
Control	Group	1	. 8	49.6250	9.782	3.459
Exis.	Group	2	10	52.0000	4.243	1.342

stimate	e Variance E	Separat	stimate	Variance Es	Pooled		
2-Tail Prob.	Degrees of Freedom	t Value	2-Tail Prob.	Degrees of Freedom	t Value	2-Tail Prob.	F Value
.538	9.10	64	.497	16	69	.024	5.32

No sig. difference

MORE

Independent samples of GROUP GROUP (EXPERIMENTAL / CONTROL) Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: ARTS ARTS SUBSCORE

	Number of Cases	Mean	Standard Deviation	Standard Error
Croup 1 Group 1	8	48.1250	6.854	2.423
Exy). Group 2	10	49.5000	4.836	1.529

		Pooled	Variance Es	stimate	Separat	Separate Variance Estimate		
F Value	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	
2.01	.326	50	16	.624	48	12.18	.640	

No sig. difference

.

•

.

.

.

LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS"

Pre to Post ABLE Gains October 1992 through February 1993

	READING	COOMPREHEN	SION	MATHEMA'	FICS OPERAT	IONS
Student	Pre	Post	Gain	Pre	Post	<u>Gain</u>
`						
Experimental Class	s - J <u>ean Dy</u>	<u>ver, Instru</u>	ictor			
				7 7	13 0	5 8
	13.0 5.8	13.0	2.8	6.3	7.7	1.4
	9.1	13.0	3.9	7.5	8.1	.6
	9.5	13.0	3.5	7.5	13.0	5.5
	5.8	5.8		5.2	5.6	.4
	7.6	1.2	(4)	12.1	13.0	.9
	7.6	11.4	3.8	12.1	13.0	. 9
	8.2	8.2	0	5.9	6.1	. 2
	8.2	13.0	4.8	7.2	13.0	5.8
Mean (N=10)	8.78	10.62	1.84	7.14	10.17	3.03
, C		·				
<u>Control Class - J</u>	<u>oseph Cort</u>	<u>ese, Instru</u>	uctor			
	7 2	6.3	(-, 9)	6.1	7.2	1.1
	6.1	6.1	0	6.1	7.5	1.4
	10.7	12.3	1.6	8.0	10.0	2.0
	13.0	13.0	0	6.6 5 9	9.3	2.7
	13.0 5.5	6.1	.6	5.9	8.0	2.1
	6.6	5.3	(-1.3)	8.3	13.0	4.7
	12.3	11.4	(9)	7.7	11.5	(-2)
	5.1	4.9	(2)	7.0	0.0	(2)
Mean (N=9)	8.81	8.71	(1)	6.84	9.59	2.75
				,		

SEST COPY EVAILABLE

ANBLE TEST - Control Group

MORE

READ_PRE READING COMPREHENSION PRETEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	5.1	1	11.1	11.1	11.1
	5.5	1	11.1	11.1	22.2
	6.1	1	11.1	11.1	33.3
	6.6	1	11.1	11.1	44.4
	7.2	1	11.1	11.1	55.6
	10.7	1	11.1	11.1	66.7
	12.3	1	11.1	11.1	77.8
	13.0	2	22.2	22.2	100.0
	Total	9	100.0	100.0	

ABLE Test - Control Group

MORE

MORE

READ_PST READING COMPREHENSION POST TEST /

FRIC

Value Frequency P	Valid Cum cent Percent Percer	ıt
4.9 1	1.1 11.1 11.1	L
5.3 1	1.1 11.1 22.2	2
6.1 2	2.2 22.2 44.4	i
6.3 1	1.1 11.1 55.6	5
11.4 1	1.1 11.1 66.7	7
12.3 1	1.1 11.1 77.8	3
13.0 2	2.2 22.2 100.0	כ
*** == == == =* ***		
Total 9	0.0 100.0	
	0.0 100.0	, -

READ_PST READING COMPREHENSION POST TEST Midpoint Count 1 4.9 1 5.4 2 5.9 1 6.4 0 6.9 0 7.4 0 7.9 0 8.4 0 8.9 0 9.4 0 9.9 0 10.4 0 10.9 1 11.4 0 11.9 1 12.4 2 12.9 - . Í....+....I....+....I....+.. ..I....+....I....+....I 0 1 2 3 4 5 Histogram frequency MORE AD PST READING COMPREHENSION POST TEST Mean 🐳 8.711 Median Std dev 6.300 3.580 Variance 12.814 Range 8.100

ABLE Test - Contral Graup

MATH_PRE MATH OPERATIONS PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	5.9	2	22.2	22.2	22.2
	6.1	2	22.2	22.2	44.4
	6.6	1	11.1	11.1	55.6
	7.0	1	11.1	11.1	66.7
	7.7	1	11.1	11.1	77.8
	8.0	1	11.1	11.1	88.9
	8.3	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

MORE

MATH_PRE MATH OPERATIONS PRE-TEST

.895

by ERIC

Range

2.400

ABLE Test Control Group

MORE

MATH_PST MATH OPERATIONS POST TEST '

Valid Cum Frequency Value Label Value Percent Percent Percent 6.8 1 11.1 11.1 11.1 7.2 1 11.1 11.1 22.2 7.5 1 11.1 11.1 33.3 8.0 1 11.1 11.1 44.4 9.3 1 11.1 11.1 55.6 10.0 1 11.1 66.7 11.1 11.5 1 11.1 11.1 77.8 13.0 2 100.0 22.2 22.2 Total 9 100.0 100.0

MORE

ABLE Test - Exp. Group

MORE

READ_PRE READING (COMPREHENSION PRETEST)

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	5.8	2	20.0	20.0	20.0
	7.6	2	20.0	20.0	40.0
	8.2	2	20.0	20.0	60.0
	9.1	1	10.0	10.0	70.0
	9.5	1	10.0	10.0	80.0
	13.0	2	20.0	20.0	100.0

	Total	10	100.0	100.0	

MORE

READ_PRE READING COMPREHENSION PRETEST

 Mean
 8.780
 Median
 8.200
 Std dev
 2.527

 Calance
 6.384
 Range
 7.200
 56

ABLE Test - Exp. Group

READING COMPREHENSION POST TEST READ_PST

READING COMPREHENSION POST TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	5.8	l	10.0	10.0	10.0
	7.2	1	10.0	10.0	20.0
	8.2	1	10.0	10.0	30.0
	8.6	1	10.0	10.0	40.0
	11.4	1	10.0	10.0	50.0
	13.0	5	50.0	50.0	100.0
	Total	19	100.0	100.0	

Midpoint Count 0 5.4 5.9 1 0 6.4 0 6.9 1 7.4 7.9 0 2 8.4 0 8.9 0 9.4 0 9.9 0 10.4 0 10.9 1 11.4 0 11.9 12.4 0 5 12.9 Ō. 13.4 .I....+....I....+....I....+....I.....I I. +. 0 1 2 3 4 Histogram frequency MORE AD_PST READING COMPREHENSION POST TEST

Mean Variance	10.620 8.200	Me dian Range	12.200 7.200	Std dev	2.863
			57		

MORE

5

AD_PST

ABLE TEST- Exp. Group

MATH_PRE MATH OPERATIONS PRE-TEST

Value	Frequency	Percent	Valid Percent	Cum Percent
5.2	1	10.0	10.0	10.0
5.4	1	10.0	10.0	20.0
5.9	1	10.0	10.0	30.0
6.3	1	10.0	10.0	40.0
7.2	2	20.0	20.0	60.0
7.5	2	20.0	20.0	80.0
12.1	2	20.0	20.0	100.0
Total	10	100.0	100.0	
	Value 5.2 5.4 5.9 6.3 7.2 7.5 12.1 Total	ValueFrequency5.215.415.916.317.227.5212.12Total10	ValueFrequencyPercent5.2110.05.4110.05.9110.06.3110.07.2220.07.5220.012.1220.0Total10100.0	ValueFrequencyPercentValid5.2110.010.05.4110.010.05.9110.010.06.3110.010.07.2220.020.07.5220.020.012.1220.020.0Total10

.

MORE

MATH_PRE MATH OPERATIONS PRE-TEST

MATH_PRE MATH OPERATIONS PRE-TEST

ERIC

Mean Variance	7.640 6.223	Median Range	7.200 6.900 58	Std dev	2.495

MATH_PST MATH OPERATIONS POST TEST /

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	5.0	1	10.0	10.0	10.0
	6.1	1	10.0	10.0	20.0
	7.7	1	10.0	10.0	30.0
	8.1	1	10.0	10.0	40.0
	12.1	1	10.0	10.0	50.0
	13.0	5	50.0	50.0	100.0
				~~~~~	
	Total	10	100.0	100.0	

MORE



Paired samples t-test: READ_PRE READING COMPREHENSION PRETEST READ_PST READING COMPREHENSION POST TEST

ABLE Test - Control Groups

Variable	Number of Cases	Mean	Standard Deviation	Standard Error
READ_PRE	9	8.8333	3.362	1.121
READ_PST	9	8.7111	3.580	1.193

(Difference	) Standard	Standard	2-Tail	t	Degrees of	2-Tail
Mean	Deviation	Error	Corr. Prob.	Value	Freedom	Prob.
.1222	.876	.292	.970 .000	.42	8	.686

Not sign difference

MORE

Paired sam	ples t-test:	MATH_PRE MATH OPERATIONS PRE-TEST, MATH_PST MATH OPERATIONS POST TEST			r T		
Variable	Number of Cases	Standard Standard Mean Deviation Error					
MATH_PRE	9	6.8444	.946	. 31	L5		
MATH_PST	. 9	9.5889	2.438	.81	13		
(Differenc Mean	ce) Standard Deviation	Standar Error	d Corr.	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.
-2.7444	4 2.181	.727	.451	.223	-3.77	8	.005

Sig. difference.

۰.

MORE

red samples t-test: READ_PRE *READING COMPREHENSION PRETEST, READ_PST READING COMPREHENSION POST TEST

ABLE Test - Exp. Groups

Variable	Number of Cases	Mean	Standard Deviation	Standard Error
READ_PRE	10	8.7800	2.527	.799
READ_PST	10	10.6200	2.863	.906

(Difference	) Standard	Standard	2-Tail	t	Degrees of	2-Tail
Mean	Deviation	Error	Corr. Prob.	Value	Freedom	Prob.
-1.8400	2.084	.659	.708 .022	-2.79	9	.021

Sicy, difference

MORE

red sar	mples t-test:	MATH_PRE MATH_PST	MATH OPE MATH OPE	MATH OPERATIONS PRE-TEST MATH OPERATIONS POST TES		T	
Variable	Number of Cases	Mean	Standard Deviation	Standa Errc	ard or		
MATH_PRE	10	7.6400	2.495	.78	39		
MATH_PST	10	10.4600	3.176	1.00	)4		
(Differend) Mean	ce) Standard Deviation	Standard Error	Corr.	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.
-2.820	0 2.729	.863	.559	.093	-3.27	9	.010

sig. difficience



ABLE TENT

Independent samples of GROUP GROUP (CONTROL / EXPERIMENTAL), Group 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: READ_PRE READING COMPREHENSION PRETEST /

		Number		Standard	Standard
		of Cases	Mean	Deviation	Error
Control Gro	up 1	9	8.8333	3.362	1.121
Exp. Gro	up 2	10	8.7800	2.527	.799

stimate	e Variance E	Separat	oled Variance Estimate			Pooled			
egrees of 2-Tail Freedom Prob.		t Value	2-Tail Prob.	Degrees of Freedom	t Value	2-Tail Prob.	F Value		
.970	14.80	.04	.969	17	.04	.412	1.77		
sig. diff	NC+								

MORE

Independen	t samples	of	GROUP	GROUP	( CON	ITROL /	EXPERIMENTAL)	
Group 1:	GROUP	EQ	0	Grcup	2:	GROUP	EQ 1	

t-test for: READ_PST READING COMPREHENSION POST TEST

	Number		Standard	Standard	
	of Cases	Mean	Deviation	Error	
Control Group 1	9	8.7111	3.580	1.193	
Exp. Group 2	10	10.6200	2.863	.906	

		Pooled	Variance Es	stimate	Separate Variance Estimate			
F Value	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	
1.56	.519	-1.29	17	.214	-1.27	15.34	.221	

NOT SELENCE



ABLE TEST

Independent sample	les of GROUP	GROUP (CON	TROL / EX	PERIMENTAL)		
up 1: GROUP	EQ O	Group 2:	GROUP	EQ 1		
t-test for: MATH	I_PRE MATH OPER	ATIONS PRE-1	TEST			
C	Number of Cases Mea	Standar n Deviatio	rd Stan on Er	dard ror		
Connect Group 1 Exyo Group 2	9 6.84 10 7.64	44 .94 00 2.49	46 . 95 .	315 789		
	Pooled Varianc	e Estimate	Separate	Variance E	stimate	
F 2-Tail Value Prob.	t Degrees Value Freed	of 2-Tail om Prob.	t Value	Degrees of Freedom	2-Tail Prob.	
6.95 .012	90 17	.382	94	11.77	.368	
				.\	ict sig diffeen	لاز
					MORE	
Independent samp	les of GROUP	GROUP (COM	NTROL / EX	(PERIMENTAL)		
Group 1: GROUP	EQ O	Group 2:	GROUP	EQ 1		
t-test for: MAT	H_PST MATH OPER	ATIONS POST	TEST			
	Number of Cases Mea	Standan Deviatio	rd Stan on Er	ndard Fror		
Control Group 1 Exp. Group 2	9 9.58 10 10.46	889     2.43       500     3.13	38 . 76 1.	813 004		
	Pooled Variand	e Estimate	Separate	e Variance E	Estimate	
F 2-Tail Value Prob.	t Degrees Value Freed	; of 2-Tail lom Prob.	t Value	Degrees of Freedom	2-Tail Prob.	
1.70 .468	66 17	.515	67	16.63	.509	
				Not 5	en en en 100	

63

.



ETS TEST - Experimental Graup

#### PROSE LITERACY POST TEST PROS_PST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	250	1	7.7	7.7	7.7
	270	1	7.7	7.7	15.4
	290	1	7.7	7.7	23.1
	300	1	7.7	7.7	30.8
	310	2	15.4	15.4	46.2
	330	1	7.7	7.7	53.8
	340	3	23.1	23.1	76.9
	350	1	7.7	7.7	84.6
	360	2	15.4	15.4	100.0
	Total	13	100.0	100.0	

MORE

#### PROS_PST PROSE LITERACY POST TEST



#### PROSE LITERACY POST TEST PROS_PST

۱

Std dev Median 330.000 34.511 Mean 319.231 Variance 110.000 1191.026 Range 64



MORE

ETS TEST - Experimented cicups

MORE

# QUAN_PRE QUANTITATIVE LITERACY PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	280	3	23.1	23.1	23.1
	290	4	30.8	30.8	53.8
	300	4	30.8	30.8	84.6
	310	2	15.4	15.4	100.0
	Total	13	100.0	100.0	

MORE

## QUAN_PRE QUANTITATIVE LITERACY PRE-TEST





١

Full fext Provided by EFIC

ETS TEST - Experimental Gicup

MORE

## QUAN_PST QUANTITATIVE LITERACY POST TEST

Value Label	Value	Freguency	Percent	Valid Percent	Cum Percent
	250	3	23.1	23.1	23.1
	270	2	15.4	15.4	38.5
	290	2	15.4	15.4	53.8
	300	1	7.7	7.7	61.5
	320	2	15.4	15.4	76.9
	330	2	15.4	15.4	92.3
	390	1	7.7	7.7	100.0
	Total	13	100.0	100.0	

MORE

QUAN_PST QUANTITATIVE LITERACY POST TEST



### MORE

# QUAN_PST QUANTITATIVE LITERACY POST TEST

Mean Variance	296.923 1673.077	Median Range	290.000 140.000	Std dev	40.903
0			E E	36	



- ETSTEST

Paired samp	oles t-test:	: DOC_PRE DOC_POST	DOCUMENT	LITERAC	Y PRE-TE Y POST T	ST EST :		
Variable	Number of Cases	Mean	Standard Deviation	Standa: Erro:	rd r			
DOC PRE	9	291.1111	37,896	12.63	2			
DOC_POST	9	304.4444	24.552	8.18	4			
(Difference Mean	e) Standard Deviation	Standard Error	Corr.	2-Tail   Prob.	t Value	Degrees of Freedom	2-Tail Prob.	
-13.3333	37.417	12.472	.343	.366	-1.07	8	.316	
						NO Sig	- $h(-Fe, <)$	( <u>ر</u>

Central Grando

MORE

Fired san	apies t-test:	PROS_PR	e prose l F prose l	ITERACY F ITERACY F	PRE-TEST POST TEST	1	
Variable	Number of Cases	Mean	Standard Deviation	Standa Erro	ard or		
PROS_PRE	9	288.8889	21.473	7.15	58		
PROS_PST	9	312.2222	34.921	11.64	10		
(Differend Mean	ce) Standard Deviation	Standar Error	d Corr	2-Tail . Prob.	t Value	Degrees of Freedom	2-Tail Prob.

Mean	Deviation	Error	Corr. Prob.	Value	Freedom	Prob.	
-23.3333	21.213	7.071	.821 .007	-3.30	8	.011	

Sig. difference

•

Control Group - ETS test

Paired sam	ples t-test:	QUAN_PRE QUAN_PSI	QUANTITA QUANTITA	TIVE LII TIVE LII	TERACY	PRE-TEST POST TEST	Í
Variable	Number of Cases	Mean	Standard Deviation	Standa Erro	ard or		
QUAN_PRE QUAN_PST	9 9	276.6667 296.6667	16.583 37.749	5.52 12.58	28 33		
(Differenc Mean	e) Standard Deviation	Standaro Error	Corr.	2-Tail Prob.	t Valu	Degrees of e Freedom	2-Tail Prob.
-20.0000	25.981	8.660	.819	.007	-2.3	1 8	.050

Sicy difference



•

.

Experimental	Group

aired?	samp]	les	t-test:	DOC_PRE DOC_POST	DOC DOC	UMENT UMENT	LITER	SYCA SYCA	PRE-T POST	est Test			
/ariabl	.e c	Num of C	iber lases	Mean	Star Devia	dard tion	Star Ei	dard ror	1				
DC_PRE DC_POS	e St		13 13	295.3846 306.9231	30 29	).170 ).264	8. 8.	368 117					
Differ) Me	rence) ean	) St Dev	andard viation	Standard Frror	L	Corr.	2-Tail Prob.	-	t Value	Deg F	rees of reedom	2-Tai Prob	1
-11.5	5385		29.678	8.231		.502	.081	-	-1.40		12	.186	
										٨	c sa	diffen	NCC.

٠

ERIC

ETS TEST

MORE

vaired sam	ples t-test	PROS_PRI PROS_PS1	E PROSEGLIS F PROSE LIS	FERACY P FERACY P	RE-TEST . OST TEST	· .	
/ariable	Number of Cases	Mean	Standard Deviation	Standa Erro	rd r		
'ROS_PRE 'ROS_PST	13 13	300.0000 319.2308	19.579 34.511	5.43 9.57	0 2		
Differenc Mean	e) Standard Deviation	Standaro Error	Corr.	2-Tail   Prob.	t Value	Degrees of Freedom	2-Tail Prob.
-19.2308	32.777	9.091	.370	.213	-2.12	12	.056

Sig difference.

EST COPY OVAILABLL

Experimental Gaup - ETS TENT

MORE

No sig difference

Paired samples t-test: QUAN_PRE QUANTITATIVE LITERACY PRE-TEST QUAN_PST QUANTITATIVE LITERACY POST TEST

Variable	Number of Cases	Mean	Standard Deviation	Standard Error
QUAN_PRE	13	293.8462	10.439	<b>2.895</b>
OUAN PST	13	296.9231	40.903	11.345

(Difference	) Standard	Standard	2-Tail	t	Degrees of	2-Tail
Mean	Deviation	Error	Corr. Prob.	Value	Freedom	Prob.
-3.0769	37.724	10.463	.420 .153	29	12	.774



Independent samples of GROUP GROUP (CONTROL / EXPERIMENTAL) >

ETS TEST

up 1: GROUP EQ 0 Group 2: GROUP EQ 1

t-test for: DOC_PRE DOCUMENT LITERACY PRE-TEST

			Number		Standard	Standard	
			of Cases	Mean	Deviation	Error	
Contril	Group	1	9	291.1111	37.896	12.632	
Exp	Group	2	13	295.3846	30.170	8.368	

Pooled Variance Estimate | Separate Variance Estimate 2-Tail Degrees of 2-Tail F t t Degrees of 2-Tail Value Prob. Value Freedom Prob. Value Freedom Prob. 1.58 -.29 .459 20 .771 -.28 14.68 .782 No sig difference

MORE

Ve Sicy difference

Independe	nt samples	of GROUP	GROUP (CONTROL / EXPERIMENTAL)
up 1:	GROUP	EO 0	Group 2: GROUP EO 1

t-test for: DOC_POST DOCUMENT LITERACY POST TEST

			Number		Standard	Standard
			of Cases	Mean	Deviation	Error
(avtic)	Group	1	9	304.4444	24.552	8.184
έχψ	Group	2	13	306.9231	29.264	8.117

	•	Pooled	Variance Es	stimate	Separat	e Variance E	stimate
F Value	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.	t Value	Degrees of Freedom	2-Tail Prob.
1.42	.632	21	20	.837	22	19.14	.832

2 groups similar with respect たったーキンナ: decument lit. + prese Lit. cuty!



	ET	Ś	TE	H	
--	----	---	----	---	--

.

Independent samp	les of GROUP	GROUP (CONTR	OL / EXPERIMENTA	L) '
Group 1: GROUP	EQ 0	Group 2: GR	OUP EQ 1	
t-test for: PRO	S_PRE PROSE LITE	RACY PRE-TEST	1	
	Number of Cases Mean	Standard Deviation	Standard Error	
Centrel Group 1 Exp Group 2	9 288.888 13 300.000	9 21.473 0 19.579	7.158 5.430	
	Pooled Variance	Estimate S	eparate Variance	e Estimate
F 2-Tail Value Prob.	t Degrees Value Freedo	of 2-Tail m Prob.	t Degrees o Value Freedom	of 2-Tail M Prob.
1.20 .746	-1.26 20	.223	-1.24 16.27	.234
			i	Vie sier chiffenerica
				MORE
Independent samp	ples of GROUP	GROUP (CONTR	ROL / EXPERIMENTA	AL)
Group 1: GROUP	EQ O	Group 2: GF	ROUP EQ 1	
t-test for: PRO	DS_PST PROSE LITH	RACY POST TES	ST	
	Number of Cases Mean	Standard Deviation	Standard Error	
(Control Group 1 Exys Group 2	9 312.222 13 319.230	22 34.921 08 34.511	11.640 9.572	
	Pooled Variance	e Estimate   S	Separate Varianc	e Estimate
F 2-Tail Value Prob.	t Degrees Value Freedo	of 2-Tail om Frob.	t Degrees Value Freedo	of 2-Tail m Prob.
1.02 .937	47 20	.646	47 17.23	.648
· .			;\\c	- signal Herenics

Full Tax Provided by ERIC

•

72
ETS TEST

.

•

_

~

ERIC Pruit East Provided by Eric MORE

-		•	/ EXPERIMENTAL )	,		
bup 1: GROUP	EQ 0	Group 2: GROU	P EQ 1			
t-test for: QUA	N_PRE QUANTITATI	VE LITERACY PRE-	-TEST			
	Number of Cases Mean	Standard Deviation	Standard Error			
Centric I Group 1 Exp?. Group 2	9 276.666 13 293.846	7 16.583 2 10.439	5.528 2.895			
	Pooled Variance	Estimate Sep	arate Variance E	stimate		
F 2-Tail Value Prob.	t Degrees Value Freedo	of 2-Tail m Prob. Va	t Degrees of lue Freedom	2-Tail Prob.		
2.52 .144	-2.99 20	.007 -2	.75 12.37	.017		
			519	difference,		
				MORE		
Independent samp	ples of GROUP	GROUP (CONTROL	/ EXPERIMENTAL)			
oup 1: GROUP	EQ 0	Group 2: GROU	P EQ 1			
t-test for: QUAN_PST QUANTITATIVE LITERACY POST TEST ,						
t-test for: QUA	N_PST QUANTITATI	VE LITERACY POS	T TEST ,			
t-test for: QU2	N_PST QUANTITATI Number of Cases Mean	VE LITERACY POS Standard Deviation	T TEST , Standard Error			
t-test for: QUA (and Group 1 Exp Group 2	AN_PST QUANTITATI Number of Cases Mean 9 296.666 13 296.923	VE LITERACY POS Standard Deviation 7 37.749 1 40.903	T TEST , Standard Error 12.583 11.345			
t-test for: QUA (and Group 1 Exp. Group 2	AN_PST QUANTITATI Number of Cases Mean 9 296.666 13 296.923 Pooled Variance	VE LITERACY POS Standard Deviation 7 37.749 1 40.903 Estimate Sep	T TEST , Standard Error 12.583 11.345 arate Variance B	Stimate		
t-test for: QUA (control Group 1 Exp: Group 2 F 2-Tail Value Prob.	AN_PST QUANTITATI Number of Cases Mean 9 296.666 13 296.923 Pooled Variance t Degrees Value Freedo	VE LITERACY POS Standard Deviation 7 37.749 1 40.903 Estimate Sep of 2-Tail m Prob. Va	T TEST , Standard Error 12.583 11.345 arate Variance H t Degrees of lue Freedom	Stimate 2-Tail Prob.		
t-test for: QUA (in the Group 1 $\mathcal{E}_{\mathcal{K}_{1}}$ ) Group 2 F 2-Tail Value Prob. 1.17 .844	AN_PST QUANTITATI Number of Cases Mean 9 296.666 13 296.923 Pooled Variance t Degrees Value Freedo 01 20	VE LITERACY POS Standard Deviation 7 37.749 1 40.903 Estimate Sep of 2-Tail m Prob. Va .988 -	T TEST , Standard Error 12.583 11.345 arate Variance E t Degrees of lue Freedom .02 18.25	Stimate 2-Tail Prob. .988		



# LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS"

# Pre to Post ETS Gains October 1992 through February 1993

	DOCUM	DOCUMENT LITERACY		PROSE LITERACY		QUANTITATIVE LITERACY			
Student	Pre	Post	Gain	Pre	Post	Gain	Pre	Post	Gain
Experimental Class - Jear	<u>Dyer, Ins</u>	tructor							
	260	280	20	270	270	0	290	270	(-20)
	320	350	30	320	350	30	310	330	20
	310	290	(-20)	290	360	70	280	250	(-30)
	310	320	10	310	300	(-10)	280	290	10
	300	260	(-40)	280	250	(-30)	300	250	(-50)
Han-Internet Minternet	350	350	0	310	340	30	300	390	90
	260	300	0	270	360	90	290	250	(-40)
. د الک کار زید د بر بر الک ک	280	280	0	290	290	0	280	290	10
<b></b>	340	320	(-20)	310	330	20	300	320	20
	270	290	20	320	310	(-10)	290	300	10
<b></b>	280	350	70	330	340	10	300	270	(-10)
	260	300	40	290	310	20	290	330	40
	300	300	10	310	340	30	310	320	10
Mean (N=13)	295	307	12	279 700	319	40	294	297	3
1,0				<u>_</u>					
<u>Control Class - Joseph C</u>	ortese, Ins	tructor							·
<del>و با در بالبری منطقه معالی</del>	270	310	40	290	290	0	260	270	10
	300	290	(-10)	250	280	30	250	260	10
a and a second	270	340	70	300	310	10	280	280	0
	320	280	(-40)	310	370	60	300	360	60
<del>د بالمتحديد والمتحدة .</del>	370	350	(-20)	320	350	30	300	350	50
	250	290	40	280	280	0	270	260	(-10)
	250	300	50	280	290	10	280	280	0
2/dependence of the second	290	290	0	300	350	50	270	320	50
	300	290	(-10)	270	290	20	280	290	10
Mean (N=9)	291	304	13	289	<b>301</b>	12	277	297	20
					313				





•

# PPOS_PRE PROSE LITERACY PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	250	1	11.1	11.1	11.1
	270	1	11.1	11.1	22.2
	280	2	22.2	22.2	44.4
	290	1	11.1	11.1	55.6
	300	2	22.2	22.2	77.8
	310	1	11.1	11.1	88.9
	320	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

MORE

MORE



DS_PREPROSE LITERACYPRE-TESTMean288.889Median290.000Std dev21.473Variance461.111Range70.000



ETS Test - (antral Groups

# DOC_PRE DOCUMENT LITERACY PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	250	2	22.2	22.2	22.2
	270	2	22.2	22.2	44.4
	290	1	11.1	11.1	55.6
	300	2	22.2	22.2	77.8
	320	1	11.1	11.1	88.9
	370	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

MORE

MORE

#### DOC_PRE DOCUMENT LITERACY PRE-TEST



MORE

#### DOC_PRE DOCUMENT LITERACY PRE-TEST



291.111 1436.111 Median Range 290.000 120.000

Std dev

76

37.896



S

_PST PROSE LITERACY POST TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	280	2	22.2	22.2	22.2
	290	3	33.3	33.3	55.6
	310	1	11.1	11.1	66.7
	350	2	22.2	22.2	88.9
	370	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

MORE	
------	--

_PST PROSE LITERACY POST TEST





# KOS_PST PROSE LITERACY POST TEST

 Mean
 312.222
 Median
 290.000
 Std dev
 34.921

 Since
 1219.444
 Range
 90.000
 77

MORE

ETS - Control Gieups

# DOC_POST DOCUMENT LITERACY POST TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	280	1	11.1	11.1	11.1
	290	4	44.4	44.4	55.6
	300	1	11.1	11.1	66.7
	310	1	11.1	11.1	77.8
	340	1	11.1	11.1	88.9
	350	1	11.1	11.1	100.0
	Total	9	100.0	100.0	

MORE

#### DOC_POST DOCUMENT LITERACY POST TEST



MORE

### DOC_POST DOCUMENT LITERACY POST TEST



# QUAN_PRE QUANTITATIVE LITERACY PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	250	1	11.1	11.1	11.1
	260	1	11.1	11.1	22.2
	270	2	22.2	22.2	44.4
	280	3	33.3	33.3	77.8
	300	2	22.2	22.2	100.0
	Total	9	100.0	100.0	

ETS TEST - Control Group

MORE

QUAN_PRE QUANTITATIVE LITERACY PRE-TEST



MORE

# QUAN_PRE QUANTITATIVE LITERACY PRE-TEST

hean	276.667	Median	280.000	Std dev	16.583
Variance	275.000	Range	50.000		



## QUAN_PST QUANTITATIVE LITERACY POST TEST

quency	Percent	Percent	Percent
2	22.2	22.2	22.2
1	11.1	11.1	33.3
2	22.2	22.2	55.6
1	11.1	11.1	66.7
1	11.1	11.1	77.8
1	11.1	11.1	88.9
1	11.1	11.1	100.0
9	100.0	100.0	
	Juency 2 1 2 1 1 1 1 9	JuencyPercent222.2111.1222.2111.1111.1111.1111.19100.0	Juency         Percent         Valid           2         22.2         22.2           1         11.1         11.1           2         22.2         22.2           1         11.1         11.1           1         11.1         11.1           1         11.1         11.1           1         11.1         11.1           9         100.0         100.0

MORE

# QUAN_PST QUANTITATIVE LITERACY POST TEST



MORE

#### QUAN_PST QUANTITATIVE LITERACY POST TEST

Mean Variance	296.667 1425.000	Median Range	280.000 100.000	Std dev	37.749
0				80	

# DOC_PRE DOCUMENT LITERACY PRE-TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	260	3	23.1	23.1	23.1
	270	1	7.7	7.7	30.8
	280	2	15.4	15.4	46.2
	300	2	15.4	15.4	61.5
	310	2	15.4	15.4	76.9
	320	1	7.7	7.7	84.6
	340	1	7.7	7.7	92.3
	350	1	7.7	7.7	100.0
	Total	13	100.0	100.0	

MORE



#### MORE

Mean Variance	295.385 910.256	Median Range	300.000 90.000	Std dev	30.170

DOCUMENT LITERACY PRE-TEST

ERIC^{*}

DOC_PRE

# DOC_POST DOCUMENT LITERACY POST TEST

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	260	l	7.7	7.7	7.7
	280	2	15.4	15.4	23.1
	290	2	15.4	15.4	38.5
	300	3	23.1	23.1	61.5
	320	2	15.4	15.4	76.9
	350	3	23.1	23.1	100.0
	Total	13	100.0	100.0	

MORE

# DOC_POST DOCUMENT LITERACY POST TEST



MORE

DOC_POST DOCUMENT LITERACY POST TEST

۱



#### PROS_PRE PROSE LITERACY PRE-TEST

.

Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
	270	2	15.4	15.4	15.4
	280	1	7.7	7.7	23.1
	290	3	23.1	23.1	46.2
	310	4	30.8	30.8	76.9
	320	2	15.4	15.4	92.3
	330	1	7.7	7.7	100.0
	Total	13	100.0	100.0	

MORE

#### PROS_PRE PROSE LITERACY PRE-TEST



PROS_PRE PROSE LITERACY PRE-TEST Mean 300.000 Median 310.000 Std dev 19.579 383.333 Variance Range 60.000



83

١

MORE

APPENDIX B

Curriculum and Materials Outline



84

.

R

### LEHIGH COUNTY COMMUNITY COLLEGE

Verifying Adult Literacy Skills (VALS)

Experimental Group Curriculum Overview

#### Curriculum Outline

- I. Introduction to Course
  - A. Education Testing Service Applied Skills Series
    - 1. Document Skills
    - 2. Reading Skills
    - 3. Numbers Skills
  - B. Steck-Vaughn GED Literature and the Arts
    - 1. Steck-Vaughn Mathematics
    - 2. Steck-Vaughn Exercise Book mathematics
    - 3. Cambridge Writing Skills Test
      - a. Part 1 Conventions of English
      - b. Part 2 The Essay
- II. Writing Skills
  - A. Sentence structure
  - B. Usage
  - C. Mechanics
  - D. Editing paragraphs
  - E. Practice test
  - F. The writing process
  - G. Text Cambridge GED Writing
- III. Literature and the Arts
  - A. Popular literature
  - B. Classical literature
  - C. Commentary on the arts
  - D. Articles from newspapers
  - E. Writing skills from E.T.S. books
  - F. Text Steck-Vaughn Literature and the Arts
  - G. E.T.S. reading skills
  - IV. Mathematics
    - A. Whole numbers
    - B. Fractions
    - C. Decimals
    - D. Percents
    - E. Graphs
    - F. Ratio/Proportion
    - G. Mean/Median
    - H. Measurement
    - I. Geometry
    - J. Algebra



- K. E.T.S. Numbers and Document Skills integrated to fit in with number skills being taught
  - 1. E.T.S. Number Skills
    - a. Whole numbers addition, subtraction, multiplication, and division
    - b. Decimals
    - c. Percents
  - 2. E.T.S. document skills
    - a. Lists, charts, graphs, maps, forms, advertisements
- L. Texts
  - 1. Steck-Vaughn Mathematics
  - 2. Steck-Vaughn Exercise Book mathematics
- V. Practice GED Tests

Recommendations and Comments

- A. E.T.S. books gave practical application for skills and problem solving
- B. Insufficient numbers of hours for course work.



### LEHIGH COUNTY COMMUNITY COLLEGE

Verifying Adult Literacy Skills (VALS)

Control Group Curriculum Overview

# Curriculum Outline

- I. Introduction
  - A. Interview sheet
  - B. Sample reading comprehension test
  - C. Predictor test (Steck-Vaughn GED Review Book)
    - 1. Literature and the Arts
    - 2. Mathematics
    - 3. Science
    - 4. Social Studies
    - 5. Writing Skills
  - D. Evaluation of Scores
- II. Social Studies
  - A. Vocabulary
  - B. Geography
  - C. History
  - D. Economics
  - E. Political Science
  - F. Behavioral Science
  - G. Consumer Reports: Advertising
  - H. Consumer Reports: Today's Food
  - I. One full-length practice test
  - J. Texts
    - 1. Steck-Vaughn Complete GED Preparation.
    - Steck-Vaughn GED Exercise Book: Social Studies by Virginia A. Lowe
  - K. Homework
    - 1. Consumer Reports
    - 2. Practice exercises in test
- III. Science
  - A. Vocabulary
  - B. Biology
  - C. Earth Science
  - D. Chemistry
  - E. Physics
  - F. One full-length practice test
  - G. Texts
    - 1. Steck-Vaughn Complete GED Preparation
    - 2. Steck-Vaughn Exercise Book: Science by Rose Marie Biddler



- IV. Literature and the Arts
  - A. Popular Literature
  - в. Classical Literature
  - C. Commentary on the Arts
  - D. One full-length practice test
  - Ε. Text
    - 1. Steck-Vaughn Complete GED Preparation
      - 2. Steck-Vaughn Exercise Book: Literature and the Arts by Virginia A. Lowe
  - V. Writing Skills
    - Writing Assignment to open each class, to be returned Α. and discussed at next session
    - в. Sentence Structure
    - C. Usaqe
    - Mechanics D.
    - The Writing Process Ε.
    - F. Essay Writing
    - G. One full-length practice test
    - Η. Text
      - 1. Steck-Vaughn Complete GED Preparation
      - 2. Steck-Vaughn Exercise Book: Writing Skills Part 1: Conventions of English a.
        - by Donna A. Amatutz
        - b. Part 2: The Essay
          - by Cheryl Moore Johnson
- VI. Mathematics
  - A. Whole Numbers
  - в. Fractions
  - C. Decimals
  - D. Percents
  - Ε. Graphs and Tables
  - F. Ratio, Proportion, Mean, Median, Probability
  - G. Measurement
  - H. Algebra
  - I. Geometry
  - J. Texts
    - Steck-Vaughn Complete GED Preparation 1.
    - Steck-Vaughn Exercise Book: Mathematics by 2. Dorothy McMurtry
    - The Cambridge Program for the Mathematics Test by з. Jerry Howett

VII. E.T.S. Testing

VIII. ABLE Testing

IX. GED Practice Testing





APPENDIX C

Student Follow-up Survey



# LEHIGH COUNTY COMMUNITY COLLEGE PDE PROJECT "VERIFYING ADULT LITERACY SKILLS" 1992-93

# Student Follow-up Survey

Student Na		Interviewer
------------	--	-------------

Sex____Age____No. of School Years Completed_____

- 1. What are you doing now?
- 2. What is your career goal?
- 3. Why did you want to get a GED? Do you still want to?
- 4. When do you hope to take the test? Are you presently doing anything to prepare for it?
- 5. What caused you to leave the class? Was the class too difficult? too easy? just about right? Was there anything about the class that didn't or did meet your needs?
- 6. Is there anything you might like to see changed about the class?
- 7. What was good about the class?
- 8. Is there anything we can do to help you?

